The team which found that neutrinos may travel faster than light has carried out an improved version of their experiment - and confirmed the result.
If confirmed by other experiments, the find could undermine one of the basic principles of modern physics.
Critics of the first report in September had said that the long bunches of neutrinos (tiny particles) used could introduce an error into the test.
The new work used much shorter bunches.
It has been posted to the Arxiv repositoryand submitted to the Journal of High Energy Physics, but has not yet been reviewed by the scientific community.
The experiments have been carried out by the Opera collaboration - short for Oscillation Project with Emulsion (T)racking Apparatus.
It hinges on sending bunches of neutrinos created at the Cern facility (actually produced as decays within a long bunch of protons produced at Cern) through 730km (454 miles) of rock to a giant detector at the Gran Sasso laboratory in Italy.
The initial series of experiments, comprising 15,000 separate measurements spread out over three years, found that the neutrinos arrived 60 billionths of a second faster than light would have, travelling unimpeded over the same distance.
The idea that nothing can exceed the speed of light in a vacuum forms a cornerstone in physics - first laid out by James Clerk Maxwell and later incorporated into Albert Einstein's theory of special relativity.
Timing is everythingInitial analysis of the work by the wider scientific community argued that the relatively long-lasting bunches of neutrinos could introduce a significant error into the measurement.
Those bunches lasted 10 millionths of a second - 160 times longer than the discrepancy the team initially reported in the neutrinos' travel time.
To address that, scientists at Cern adjusted the way in which the proton beams were produced, resulting in bunches just three billionths of a second long.
When the Opera team ran the improved experiment 20 times, they found almost exactly the same result.
"We didn't think they were, and now we have the proof," he told BBC News. "This is reassuring that it's not the end of the story.""This is reinforcing the previous finding and ruling out some possible systematic errors which could have in principle been affecting it," said Antonio Ereditato of the Opera collaboration.
Read More: www.bbc.co.uk
Read More: www.bbc.co.uk
No comments:
Post a Comment